Алгебра и начала математического анализа. 10 класс. Учебник и задачник. Профильный уровень. Мордкович А.Г., Семенов П.В.

Алгебра и начала математического анализа. 10 класс. Учебник и задачник. Профильный уровень. Мордкович А.Г., Семенов П.В.

Рейтинг: 5 из 5, голосов: 2
Учебник представляет собой первую часть комплекта из двух книг, предназначенных для изучения курса алгебры и начал математического анализа в 10-м классе с профильной подготовкой по математике.
Задачник представляет собой вторую часть комплекта из двух книг, предназначенных для изучения курса алгебры и начал анализа в 10-м классе с профильной подготовкой по математике.








Содержание
Учебник.
Предисловие для учителя 3
Глава 1. Действительные числа
§ 1. Натуральные и целые числа 5
1. Делимость натуральных чисел 6
2. Признаки делимости 9
3. Простые и составные числа 14
4. Деление с остатком 15
5. Наибольший общий делитель и наименьшее общее кратное нескольких натуральных чисел 17
6. Основная теорема арифметики натуральных чисел 20
§ 2. Рациональные числа 22
§ 3. Иррациональные числа 27
§ 4. Множество действительных чисел 30
1. Действительные числа и числовая прямая 30
2. Числовые неравенства 32
3. Числовые промежутки 39
4. Аксиоматика действительных чисел 40
§ 5. Модуль действительного числа 43
§ 6. Метод математической индукции 45
Глава 2. Числовые функции
§ 7. Определение числовой функции и способы ее задания 55
§ 8. Свойства функций 67
§ 9. Периодические функции 80
§ 10. Обратная функция 82
Глава 3. Тригонометрические функции
§ 11. Числовая окружность 86
§ 12. Числовая окружность на координатной плоскости 97
§ 13. Синус и косинус. Тангенс и котангенс 104
1. Синус и косинус 104
2. Тангенс и котангенс 113
§ 14. Тригонометрические функции числового аргумента 117
§ 15. Тригонометрические функции углового аргумента 119
§ 16. Функции у = sin х, у = cos х, их свойства и графики 123
1. Функция у = sin х 123
2. Функция у = cos х 127
§ 17. Построение графика функции у = mf(x) 132
§ 18. Построение графика функции у = f(kx) 135
§ 19. График гармонического колебания 139
§ 20. Функции у = tg х, у = ctg х, их свойства и графики 141
§ 21. Обратные тригонометрические функции 150
1. Функция у = arcsin x 150
2. Функция у = arccos x 157
3. Функция у = arctg x 160
4. Функция у = arcctg x 164
5. Преобразование выражений, содержащих обратные тригонометрические функции 166
Глава 4. Тригонометрические уравнения
§ 22. Простейшие тригонометрические уравнения и неравенства 170
1. Первые представления о простейших тригонометрических уравнениях 170
2. Решение уравнения cos t = a 172
3. Решение уравнения sin t = a 175
4. Решение уравнений tg х = a, ctg х = а 180
5. Простейшие тригонометрические уравнения 185
§ 23. Методы решения тригонометрических уравнений 189
1. Метод замены переменной 189
2. Метод разложения на множители 190
3. Однородные тригонометрические уравнения 191
Глава 5. Преобразование тригонометрических выражений
§ 24. Синус и косинус суммы и разности аргументов 198
§ 25. Тангенс суммы и разности аргументов 206
§ 26. Формулы приведения 209
§ 27. Формулы двойного аргумента.
Формулы понижения степени 214
§ 28. Преобразование сумм тригонометрических функций в произведения 223
§ 29. Преобразование произведений тригонометрических функций в суммы 228
§ 30. Преобразование выражения A sin x + В cos х к виду С sin(* + t) 230
§ 31. Методы решения тригонометрических уравнений (продолжение) 232
Глава 6. Комплексные числа
§ 32. Комплексные числа и арифметические операции над ними 240
§ 33. Комплексные числа и координатная плоскость 248
§ 34. Тригонометрическая форма записи комплексного числа 256
§ 35. Комплексные числа и квадратные уравнения 269
§ 36. Возведение комплексного числа в степень. Извлечение кубического корня из комплексного числа 280
Глава 7. Производная
§ 37. Числовые последовательности 293
1. Определение числовой последовательности и способы ее задания 293
2. Свойства числовых последовательностей 298
§ 38. Предел числовой последовательности 302
1. Определение предела последовательности 302
2. Свойства сходящихся последовательностей 307
3. Вычисление пределов последовательностей 308
4. Сумма бесконечной геометрической прогрессии 310
§ 39. Предел функции 312
1. Предел функции на бесконечности 312
2. Предел функции в точке 315
3. Приращение аргумента. Приращение функции 319
§ 40. Определение производной 322
1. Задачи, приводящие к понятию производной 322
2. Определение производной 325
§ 41. Вычисление производных 330
1. Формулы дифференцирования 330
2. Правила дифференцирования 334
3. Понятие и вычисление производной n-го порядка 340
§ 42. Дифференцирование сложной функции. Дифференцирование обратной функции 341
§ 43. Уравнение касательной к графику функции 346
§ 44. Применение производной для исследования функций 352
1. Исследование функций на монотонность 352
2. Отыскание точек экстремума 356
3. Применение производной для доказательства тождеств и неравенств 362
§ 45. Построение графиков функций 363
§ 46. Применение производной для нахождения наибольших и наименьших значений величин 369
1. Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке 369
2. Задачи на отыскание наибольших и наименьших значений величин 375
Глава 8. Комбинаторика и вероятность
§ 47. Правило умножения. Перестановки и факториалы 381
§ 48. Выбор нескольких элементов.
Биномиальные коэффициенты 389
§ 49. Случайные события и их вероятности 403
Примерное тематическое планирование 417
Предметный указатель 420

Задачник.
Предисловие для учителя 3
Задачи на повторение 5
ГЛАВА 1. Действительные числа
§ 1. Натуральные и целые числа 12
§ 2. Рациональные числа 18
§ 3. Иррациональные числа 20
§ 4. Множество действительных чисел 23
§ 5. Модуль действительного числа 27
§ 6. Метод математической индукции 32
ГЛАВА 2. Числовые функции
§ 7. Определение числовой функции и способы ее задания 38
§ 8. Свойства функций 46
§ 9. Периодические функции 55
§ 10. Обратная функция 61
ГЛАВА 3. Тригонометрические функции
§ 11. Числовая окружность 69
§ 12. Числовая окружность на координатной плоскости 74
§ 13. Синус и косинус. Тангенс и котангенс 77
§ 14. Тригонометрические функции числового аргумента 83
§ 15. Тригонометрические функции углового аргумента 88
§ 16. Функции у = sin х, у = cos х, их свойства и графики 90
§ 17. Построение графика функции у = mf(x) 100
§ 18. Построение графика функции у = f(kx) 105
§ 19. График гармонического колебания 108
§ 20. Функции у = tg х, у = ctg х, их свойства и графики 112
§ 21. Обратные тригонометрические функции 115
ГЛАВА 4. Тригонометрические уравнения
§ 22. Простейшие тригонометрические уравнения и неравенства 124
§ 23. Методы решения тригонометрических уравнений 132
ГЛАВА 5. Преобразование тригонометрических выражений
§ 24. Синус и косинус суммы и разности аргументов 137
§ 25. Тангенс суммы и разности аргументов 144
§ 26. Формулы приведения 147
§ 27. Формулы двойного аргумента. Формулы понижения степени 152
§ 28. Преобразование суммы тригонометрических функций в произведение 161
§ 29. Преобразование произведения тригонометрических функций в сумму 165
§ 30. Преобразование выражения A sin x + В cos x к виду С sin (x + t) 169
§ 31. Методы решения тригонометрических уравнений (продолжение) 172
ГЛАВА 6. Комплексные числа
§ 32. Комплексные числа и арифметические операции над ними 176
§ 33. Комплексные числа и координатная плоскость 180
§ 34. Тригонометрическая форма записи комплексного числа 184
§ 35. Комплексные числа и квадратные уравнения 190
§ 36. Возведение комплексного числа в степень. Извлечение кубического корня из комплексного числа 193
ГЛАВА 7. Производная
§ 37. Числовые последовательности 197
§ 38. Предел числовой последовательности 206
§ 39. Предел функции 211
§ 40. Определение производной 221
§ 41. Вычисление производных 224
§ 42. Дифференцирование сложной функции. Дифференцирование обратной функции 233
§ 43. Уравнение касательной к графику функции 238
§ 44. Применение производной для исследования функций на монотонность и экстремумы 250
§ 45. Построение графиков функций 264
§ 46. Применение производной для отыскания наибольших и наименьших значений величин 266
ГЛАВА 8. Комбинаторика и вероятность
§ 47. Правило умножения. Перестановки и факториалы 274
§ 48. Выбор нескольких элементов. Биномиальные коэффициенты 278
§ 49. Случайные события и их вероятности 283
Дополнительные задачи 289
Ответы 294
Учебник, 2009
Задачник, 2009